If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+8p-16=0
a = 3; b = 8; c = -16;
Δ = b2-4ac
Δ = 82-4·3·(-16)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*3}=\frac{-24}{6} =-4 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*3}=\frac{8}{6} =1+1/3 $
| x/2=-3.4 | | 7+4y=7-5y+132 | | 8(p-0.24)=4(2p-0.5) | | 2(5x+3)+3x=27 | | 180-5y=150 | | (x+5)6=45 | | 2x+3=16-x | | 2b+13=4b-21 | | 34x+3=157 | | 35x+3=157 | | 38=3(x-7) | | 3x+35=157 | | y=200-16^2 | | 3m-1/2=2m+2/3 | | (3+2)x+50=125 | | 1.5x+2.25x=0 | | 24+2n=1/3(n-5) | | -(4-7)=3h | | 9+9x=50 | | 2(x+4)=-5x=1 | | -7+m/3=6 | | 3-2(b-2)=2-76 | | 5(w-10)=45 | | x^2+54+2x=0 | | 4.9x^2-25x+45=0 | | 336=7(5x-13) | | 18+x=12.6 | | -1=w/4-5 | | 10f=130 | | 2-7÷x=7 | | 6x-18=4x-23 | | -10m-8=98 |